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ARTICLE INFO ABSTRACT

Edited by Renjie Chen Gestational diabetes mellitus (GDM) poses significant risks to both maternal and child health, and its rising
incidence necessitates exploration of environmental risk factors. In GDM development, the role of environmental

Keywords: risk factors such as phthalates, a ubiquitous class of endocrine-disrupting chemicals, is not well understood. In

Phthalates exposure this study, we integrated epidemiological and toxicological studies to explore the association between phthalates

Gestational diabetes mellitus (GDM)
Human liver organoids

Metabolic disruption
Hepatotoxicity

exposure and GDM risk. We detected ten major phthalates metabolites in serum samples from a GDM case-
control cohort and found that the levels of Monobutyl phthalate (MBP), Monoethylhexyl phthalate (MEHP),
Monoethyl phthalate (MEP), and Monobenzyl phthalate (MBzP) were significantly elevated in GDM patients
compared to healthy controls. By establishing human liver organoids model and high-content imaging method,
we demonstrated that MEHP and MBP (2, 10, and 50 pM) enhanced glucose uptake and lipid accumulation in a
dose-dependent manner, promoted glycolysis, and altered key metabolic pathways related to insulin resistance.
RNA sequencing and pathway analysis revealed that both MEHP and MBP (100 pM) selectively upregulated
glycolysis-associated genes while suppressing other glucose metabolism pathways, such as the Tricarboxylic acid
cycle and Pentose phosphate pathway, leading to increased pyruvate catabolism and lactate accumulation.
Furthermore, liver organoids exhibited greater sensitivity to glucose metabolic disruption in response to MEHP
than HepG2 cells, highlighting their suitability as a model for studying phthalates-induced hepatotoxicity. Our
study provides novel evidence linking phthalate exposure to GDM risk and elucidates the underlying mechanisms
through which phthalates disrupt hepatic metabolism.

1. Introduction a significant public health threat to maternal and child health (McIntyre
et al., 2024). GDM elevates the risk of pregnancy-induced hypertension,

Gestational Diabetes Mellitus (GDM), a carbohydrate metabolism cesarean delivery, and postpartum T2DM in pregnant women, and is
disorder first diagnosed during pregnancy, affects approximately 14 % closely associated with long-term health issues such as obesity and
of global pregnancies (Sweeting et al., 2024). Its prevalence aligns with metabolic syndrome in offspring (McIntyre et al., 2019). Despite the
the rising trends of obesity and Type 2 Diabetes Mellitus (T2DM), posing complex pathophysiology of GDM, insulin resistance is considered one
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of the key underlying mechanisms (Hivert et al., 2024). Exposure to
endocrine-disrupting chemicals (EDCs) may disrupt metabolic pathways
and contribute to this process (Eberle and Stichling, 2022; Kahn et al.,
2020; Yan et al., 2022). Thus, elucidating the etiology of GDM, partic-
ularly the mechanisms of environmental risk factors, is crucial for
developing effective prevention and intervention strategies to reduce
GDM incidence and its long-term health impacts.

Phthalates, a class of widely used EDCs, have garnered attention for
their potential metabolic-disrupting effects (Huang et al., 2023; Tucu-
lina et al., 2022). Found in plastic products, cosmetics, and medical
devices, phthalates can enter the human body through diet, respiration,
or skin contact (Fruh et al., 2022). Energy metabolism during pregnancy
may be more sensitive to the toxic effects of phthalates (Gao et al.,
2021). Emerging evidence has suggested a link between phthalate
exposure and GDM. However, epidemiological studies yielded conflict-
ing results. While some epidemiological studies found no significant
association between DEHP exposure and gestational glucose intolerance
or GDM (James-Todd et al., 2018; Robledo et al., 2015; Shapiro et al.,
2015), others reported a decrease in the risk of gestational glucose
intolerance with increased urinary DEHP concentrations in pregnant
women (James-Todd et al., 2016; Martinez-Ibarra et al., 2019). On the
contrary, a study of 705 pregnant women revealed a significant increase
in GDM odds with interquartile range increase in early pregnancy uri-
nary monoethyl phthalate (MEP) concentrations (Shaffer et al., 2019).
Maternal serum phthalate metabolites, monobutyl phthalate (MBP) and
mono-isobutyl phthalate (MIBP), were also reported to be positively
correlated with GDM risk and 2-hour glucose levels (Wang et al., 2023).
These discrepancies may stem from differences in exposure time win-
dows, metabolite types, or population genetic heterogeneity (Eberle and
Stichling, 2022). However, the findings of these “correlation” studies
alone are insufficient to establish a causal relationship between phtha-
late exposure and GDM, thus cannot be readily translated into health
management strategies. Therefore, toxicological investigations are
imperative to elucidate the underlying mechanisms through which
phthalates may induce GDM.

Previous studies have indicated that phthalates may interfere with
metabolic homeostasis through multifaceted biological pathways,
though the exact mechanisms by which phthalates affect GDM are not
yet clear. For example, phthalates can bind to steroid hormone re-
ceptors, such as estrogen receptors (ER) and androgen receptors (AR),
disrupting endogenous hormonal signaling pathways (Takeuchi et al.,
2005). This interference may impair insulin sensitivity and thereby
perturb glucose metabolism. In addition, dysregulation of peroxisome
proliferators-activated receptors (PPARs) by DEHP can alter adiponectin
secretion and promote adipose tissue remodeling, exacerbating insulin
resistance and glucose intolerance (Schaffert et al., 2022). Other toxicity
pathways such as oxidative stress, inflammatory responses, and epige-
netic modifications have also been reported (Filardi et al., 2020;
Mariana and Cairrao, 2023). Importantly, the liver, as the primary organ
responsible for glucose production and insulin signaling, plays a pivotal
role in regulating glucose and lipid metabolism. Dysregulation of he-
patic metabolic pathways can have a profound impact on systemic
glucose homeostasis (Petersen et al., 2017). Given this critical role,
understanding the mechanisms by which phthalates may disrupt hepatic
metabolism is essential for elucidating the etiology of GDM. However,
current research on the hepatotoxicity of phthalates primarily relies on
animal studies, which often lack direct human relevance due to signif-
icant interspecies differences in liver physiology. Variations in the
expression and function of key metabolic enzymes and receptors, such as
PPARSs, can lead to different responses to phthalate exposure between
animals and humans (Corton et al., 2018). This interspecies variability
poses a major challenge for extrapolating the results of animal studies to
human health risks. Therefore, there is a pressing need for more
human-relevant models to study the metabolic-disrupting effects of
phthalates. The liver organoid, an excellent model for studying hepatic
energy metabolism (Hendriks et al., 2023; Huch et al., 2013), has not yet
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been utilized to investigate the relationship between phthalates and
GDM.

In this study, we aimed to explore the association between phthalates
exposure and GDM by integrating human population and toxicological
studies. In the case-control study, we found that levels of phthalate
metabolites MBP and MEHP were significantly elevated in GDM patients
compared to healthy controls, suggesting a potential link to GDM risk.
Using human liver organoids, we further demonstrated that MEHP and
MBP disrupted hepatic glucose and lipid metabolism, promoting
glycolysis and altering key metabolic pathways related to insulin resis-
tance. The study highlights the suitability of liver organoids as a sensi-
tive model for investigating the metabolic disrupting effects of
phthalates and provides foundational evidence for exploring environ-
mental interventions to reduce GDM incidence.

2. Materials and methods
2.1. Chemicals and reagents

All chemicals, antibodies, and reagents used in this study are detailed
in Supplementary Table S1.

2.2. GDM cohort

This case-control study enrolled volunteers from Zaozhuang
Maternal and Child Health Hospital in Zaozhuang City, Shandong
Province, eastern China. A total of 200 individuals were recruited be-
tween 2023 and 2024, comprising 102 patients with gestational diabetes
and 98 healthy controls. Baseline information was collected on age,
gestational week, height, pre-pregnancy weight, current weight, body
mass index (BMI), serum glucose level, and the oral glucose tolerance
test (OGTT) result. Participants’ baseline information and blood samples
were collected at the hospital, where blood samples were centrifuged at
4000 rpm for 10 min to separate serum All serum samples were stored at
—80°C until analysis. Ethical approval (NO. zfy-2023-69) for the case-
control study was obtained from the Maternal and Child Health Hospi-
tal of Zaozhuang City, Shandong Province of China, and each participant
provided written informed consent.

2.3. Sample processing and UPLC-MS/MS analysis

Following a period of overnight thawing at 4°C, 0.5 mL of serum was
extracted and combined with 250 ul of ammonium acetate buffer (1 M,
pH 6.7), 5 ul of a mixed plastocyanin internal standard solution (MEP-
d4, MIBP-d4, MCHP-d4, MBP-d4, and MEHP-d4), as well as 30 ul of
B-glucuronidase/aromatic sulphate lyase. They were vortexed to mix
well and then incubated in a temperature chamber set at 37°C for 12 h in
dark. Subsequently, the reaction was terminated by the addition of 1 mL
of phosphate buffer (0.1 M, pH 1.9). The Oasis Prime HLB column was
activated with methanol (6 mL) and phosphate buffer (6 mL), followed
by the addition of the incubated sample for separation. The retained
extracts were then dried under a gentle stream of nitrogen for 20 min,
after which the extracts were eluted from the columns with 0.5 mL of
methanol. All eluates were stored at —20°C until the samples were
assayed.

Chromatographic separation and determination of the targeted
compounds were performed on an ACQUITY Ultra Performance LC I-
Class system and a Waters XEVO-TQ-XS triple quadrupole mass spec-
trometer equipped with an ESI source. UPLC was carried out on a
Poroshell 120 HPH C18 column (2.1 x 100 mm, 1.9 pm; Agilent). The
temperatures of column and sampler were maintained at 35 °C and 8 °C,
respectively. The mobile phase, operating at a flow rate of 0.3 mL/min,
consisted of Milli-Q water containing 0.1 % acetic acid as solvent A and
methanol as solvent B. The injection volume was 2 pL. The gradient
elusion began at 10 % B and was held for 1 min, and then increased to
45 % B at 1.5 min and was held for 2.5 min. After that, mobile phase B
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increased to 100 % at 10 min. After that the column was washed with
100 % A for 3 min, then the column was re-equilibrated with the initial
mobile phase composition for 2 min before the next injection.

The ESI-MS/MS was operated in a negative mode. Nitrogen and
argon were used as the desolvation gas and the collision gas, respec-
tively. The conditions for mass detection were optimized to obtain the
highest signal intensity: capillary voltage, 2.5 KV; desolvation temper-
ature, 500 °C; source temperature, 150 °C; desolvation gas flow rate,
1200 L/h; cone gas flow rate, 150 L/h. The data were obtained and
analyzed using Waters MassLynx v4.2 software (Micromass,
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Manchester, UK). Quantitative analysis of the THs was performed with
multi-selected reaction monitoring (MRM). In the MRM transitions, the
dwell times were automatically selected. The baseline separation and
accurate quantification of the target phthalate metabolite isomers
(including MBP & MIBP, MEHP & MOP, and MNP & MINP) were vali-
dated (Supplementary Figure S2). Blank controls were incorporated
during sample detection process (Supplementary Figure S3).
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Fig. 1. Generation of human liver organoids and toxicological impact of MEHP and MBP. (a) Schematic illustration of the workflow for generating human liver
organoids and application for toxicological study of phthalates. (b) Immunofluorescence staining of mature hepatocyte marker proteins (CPT1A and ALB) and lipid
droplets (LD) within organoid cells after 5 days of differentiation. (c) Dose- and time- dependent toxicity of MEHP and MBP on liver organoids. Representative bright-
field images showing the structural alterations of liver organoids treated with MEHP and MBP at various concentrations (0, 6.25, 25, 100, 200 pM) for 24-72 h.
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2.4. Quantitation of phthalate metabolites

The ten phthalate metabolites, including Monobutyl phthalate (MBP,
CAS: 131-70-4), Monoethylhexyl phthalate (MEHP, CAS: 4376-20-9),
Monoethyl phthalate (MEP, CAS: 2306-33-4), Monoisobutyl phthalate
(MIBP, CAS: 30833-53-5), Monononyl Phthalate (MNP, CAS:
24539-59-1), Monobenzyl phthalate (MBzP, CAS: 2528-16-7), and
Monocyclohexylphthalate (MCHP, CAS: 7517-36-4), Monooctyl
phthalate (MOP, CAS : 5393-19-1), Monodecyl Phthalate (MDP, CAS:
24539-60-4), and Monoisononyl phthalate (MINP, CAS:
106610-61-1) were quantified using Waters MassLynx v4.2 software
(Micromass). Charcoal-stripped human serum with no detectable level
of any phthalate metabolite was used to prepare the quality control
samples and calibration curve samples. To obtain calibration curves to
determine the phthalate metabolites, the working standard solution was
diluted to concentrations of 0.1, 0.2, 1, 2, 5, 10, 20, 50, 100, and 200 pg/
L for LC-MS/MS analysis. The calibration curves were obtained by
plotting the area ratios of each analyte relative to its internal standard
versus the respective concentration ratios, and the relationship was
fitted using linear regression. The concentration of each phthalate
metabolite in a serum sample was interpolated using this linear function.
The analytes were identified on a comparison of the retention time and
the ratio of the two selected MRM ion transitions with those of the
standards. To ensure the accuracy of the quantitative analyses, deuter-
ium-labeled phthalate metabolites were used as internal standards. The
method detection limits (MDLs) and quantification limits (MQLs) were
estimated based on the peak-to-peak noise of the baseline near the an-
alyte peak obtained by analyzing phthalate metabolite-spiked charcoal-
stripped human serum samples. The MDLs and MQLs were determined
as the concentrations with minimum signal-to-noise (S/N) ratios of 3
and 10, respectively. Furthermore, ion suppression, accuracy, and pre-
cision analysis were also evaluated in this study.

2.5. Liver organoids

Human hepatocyte organoid lines were obtained from Beijing Dax-
iang Biotech. The hepatic organoids were mixed with proliferation
medium (Daxiang Biotech, HG100101) containing collagen at a 1:2 ratio
(v/v), and 50 pL of the mixture (approximately 500-1000 cells per well)
was seeded into 48-well plates. After solidification at 37°C for 10 min,
300 pL of proliferation medium supplemented with 0.1 % anti-apoptotic
factor (Daxiang Biotech, IA100101) was added to each well. Organoids
were cultured for 6-8 days with medium replacement every 3 days
(Fig. 1a). For cell subculture, organoids were dissociated into small
clusters (1-5 cells) using dissociation reagent (Daxiang Biotech,
KC100142). The reaction was terminated by adding two volumes of
wash buffer (Daxiang Biotech, KC100141), followed by centrifugation at
400 g for 5 min at 4°C. The cell pellet was resuspended in cold prolif-
eration medium containing 2/3 collagen and replated. All steps were
performed at 4°C to prevent collagen polymerization. For organoid
differentiation, when organoids reached 100-200 pM in diameter, the
proliferation medium was replaced with differentiation medium (Dax-
iang Biotech, HD100101). After 3-5 days of culture, mature paren-
chymal organoids were obtained. The maturation of liver organoids was
confirmed by immunofluorescence staining using antibodies against
CPT1A and ALB.

2.6. Treatment of liver organoids

Two representative phthalate metabolites (MBP and MEHP) that
exhibit higher exposure levels compared to other metabolites detected
in the serum of GDM population were selected for treatment of liver
organoids. According to the average serum concentrations of MBP
(412 ng/mlL, corresponding to 1.86 pM), the treatment concentrations
were set as 2, 10, and 50 pM in the experiments for lipid accumulation,
glucose uptake, and protein expression analyses. Stock solutions of MBP
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and MEHP in this experiment were prepared using dimethyl sulfoxide
(DMSO), and the final DMSO concentration in all treatment groups was
controlled below 0.1 %. A solvent control group was established
simultaneously. Each concentration was tested in at least two replicate
wells, with data collected from a minimum of 10 organoids per well. To
determine cytotoxicity, mature organoids were seeded into 96-well
plates and treated with MBP or MEHP (6.25, 25, 100, 200 uM) for 24,
48, or 72 h. Bright-field images were acquired using ImageXpress Micro
confocal system. Cell viability was quantitatively analyzed with 7-ami-
noactinomycin D (7-AAD) staining.

2.7. Glucose uptake

Organoids were gently collected into Eppendorf tube using pre-
cooled cleaning solution. Organoid pellets were obtained after centri-
fugation at 400 g for 5 min at 4 °C and then washed twice with PBS
(Gibco, C10010500BT) by shaking at 40 rpm for 5 min each time. A
250 pM 2-NBDG probe (Thermo Scientific, N13195) was added, and the
samples were incubated in an incubator for 12 h. After the incubation
period, the samples were washed twice by shaking with PBS. Subse-
quently, the cell nuclei were labeled with Hoechst 33342 (Solarbio,
C0031) from a 10 pg/mL solution. Following a single wash by shaking
with PBS, the organoid pellets were resuspended in FluoroBrite DMEM
and transferred to a 96-well black plate (in vitro scientific, 060096) for
imaging analysis.

2.8. Lipid droplets staining

The organoids were collected and washed using the same procedure
described previously. Sedimented organoids were fixed in 4 % Para-
formaldehyde at room temperature (RT) for 1 h. Then washed twice
with PBS and incubated with labeled lipid (LD) probes (Thermo Scien-
tific, D3922, 1 pg/mL) and Hoechst 33342 in PBS for 30 min at room
temperature, protected from the light.

2.9. Antibodies staining

Organoids were collected, washed, and fixed as previously described.
Then fixed organoids were first washed twice with PBS and then
simultaneously blocked and permeabilized using 5 % BSA (Solarbio,
SW3015) and 0.3 % Triton-X100 (Sigma-Aldrich, X100-500 mL) in PBS
at RT for 1 h. Organoids were washed once with 0.5 % BSA-PBS and
subsequently incubated with primary antibodies in 2.5 % BSA-PBS
overnight at 4 °C. The primary antibodies used were: CPT1A Poly-
clonal antibody (Proteintech, 5184-1-AP), Albumin Polyclonal antibody
(Proteintech, 16475-1-AP), HK2 Mouse Monoclonal Antibody (Bio-
dragon, BD-PA0088), PFKFB3 (11K15) Rabbit Monoclonal Antibody
(Biodragon, RM5591), G6PC Polyclonal Antibody (Thermo Scientific,
PA542541), Perilipin-2 Mouse Monoclonal Antibody (EbioCell,
EAB22501), GAPDH Mouse Monoclonal Antibody (EbioCell, EAB21667)
and LDHA (4H19) Rabbit Monoclonal Antibody (Biodragon, RM6092),
all primary antibodies dilutions were 1:100. After three washes with
0.5 % BSA-PBS, organoids were incubated with appropriate Alexa Fluor
secondary antibodies and Alexa Fluor 555 Phalloidin (CST, 8953S)
(1:200) in 2.5 % BSA-PBS for 2 h at RT. The secondary antibodies used
were: Anti-mouse IgG (H+L), F(ab’)2 Fragment (Alexa Fluor® 488
Conjugate) (CST, 4408S), Anti-rabbit IgG (H+L), F(ab’)2 Fragment
(Alexa Fluor® 647 Conjugate) (CST, 4414S), all secondary antibodies
dilutions were 1:500. Then Organoids were washed once with 0.5 %
BSA-PBS, after which they were incubated with Hoechst 33342 (1:100)
in 0.5 % BSA-PBS for 20 min at RT and washed once more with 0.5 %
BSA-PBS.

2.10. HCI quantitative analysis

The stained organoids were gently washed with PBS and then
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captured on the ImageXpress Micro Confocal system (Molecular De-
vices). The images were processed and analyzed using MetaXpress
software (Version 6.5, Molecular Devices). Briefly, Optical sections were
diligently acquired at intervals of 20-30 layers and 15-20 pm along the
z-axis for the 3D reconstruction of 20X objectives. And then the super-
imposed images were synthesized into 2D projection images, converted
into binary images. We used the MetaXpress software to add the “Top
Hat” mask to the corresponding fluorescence channel to make the fea-
tures of the organoid more obvious and then set the appropriate fluo-
rescence threshold to identify the positive staining area. Then add a
“Gaussian Filter” mask, set the appropriate parameters to make the in-
ternal brightness of the organoids uniform, so as to facilitate the iden-
tification of organoid spheres. Finally, “Find Round Objects” Mask and
“Find Blobs” Mask are added to identify organoids and the number of
nuclei in them. Parameters including DAPI Features Count and ORG

Area_Sum were exported. Fluorescence quantification was determined

ORG Area Sum (pm "2)
DAPI Features Count

by using the formula: MSA=
2.11. RNA sequencing

Mature hepatocyte organoids cultured in 24-well plates were treated
with 100 pM MEHP and MBP for 48 h, respectively. HepG2 cells were
cultured in 6-well plates were treated with 100 pM MEHP and MBP for
72 h, respectively. The total RNA was extracted from the organoids and
HepG2 cells with TRIzol. The RNA sequencing was kindly executed by
Novogene Biotech Co., Ltd. (Beijing, China). The RNA integrity was
meticulously assessed using the RNA Nano 6000 Assay Kit of the
renowned Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA). A differential expression analysis of the groups was expertly
conducted using the R package “DESeq2” (1.20.0). We identified
differentially expressed genes (DEGs) by utilizing DESeq2 with a p value
< 0.05 and |log2 (Fold Change)| > 1 (Jabato et al., 2021). A Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the
DEGs was performed using the STRING online analysis tool (https://cn.
string-db.org/, accessed on 10 September 2024). A gene set enrichment
analysis (GSEA) exercise was conducted locally utilizing the recent
version of the established GSEA analysis software (http://www.broa
dinstitute.org/gsea/index.jsp, accessed on 1 August 2024). Raw data
are available in the Gene Expression Omnibus database (https://www.
ncbi.nlm.nih.gov/geo/) with the accession numbers GSE293605.

2.12. Determination of Lactate and Pyruvate

Lactate and Pyruvate concentrations of culture medium levels were
measured using L-Lactate Assay Kit with WST-8 (Beyotime, S0208S) and
Amplex Red Pyruvate Assay Kit (Beyotime, S0299S) according to the
manufacturer’s instruction.

2.13. Statistical analysis

In the epidemiological study, descriptive analyses and the basic
characteristics of the study population were performed. The Mann-
Whitney U test was used for variables that still did not conform to
normality after the Log transformation, and the independent samples t
test was used for variables that conformed to normality after the Log
transformation. The data analyses were performed using GraphPad
Prism 10.1 (GraphPad Software Inc., San Diego, CA, USA) and IBM SPSS
Statistics for Windows (Version 26.0. Armonk, NY). The data are
expressed as the mean + standard deviation (SD). Statistical analyses
between multiple groups were performed using the one-way analysis of
variants (ANOVA), followed by Bonferroni’s test multiple comparisons.
The level of statistical significance was set at p < 0.05.
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3. Results

3.1. Association between phthalates exposure and gestational diabetes
mellitus (GDM)

In the case-control study, we carefully balanced the sample size, age,
height, weight, and other parameters between the GDM group and the
control group, thereby effectively controlling for the impact of other
confounding factors (Table 1). Additionally, we focused on the extrac-
tion and analysis of phthalates metabolites as the sole target in the serum
samples, ensuring the accuracy of the analysis. These methodological
strengths provide a more precise assessment of the association between
phthalates exposure and GDM risk.

Among ten major phthalates metabolites, MBP, MEHP, and MIBP
were universally detected (100 % detection rate), while MEP was
identified in 98.5 % of samples. MCHP and MBZP exhibited moderate
detection rates of 55 % and 27.5 %, respectively, whereas the remaining
metabolites (MNP, MDP, MINP, MOP) were detected at frequencies
below 5 %. MBP demonstrated the highest mean serum concentration
(~ 400 ng/mL), followed by MEHP (~ 10 ng/mL), while all other me-
tabolites exhibited average concentrations below 2.5 ng/mL. No sig-
nificant differences were observed between the case and control groups
regarding age, height, weight, or body mass index (BMI) (Table 1).
However, the serum levels of MBP, MEHP, MEP, and MBZP were
significantly elevated in the GDM group compared to healthy controls
(Table 1). These findings suggest that internal phthalate exposure is
associated with GDM incidence.

3.2. Impact of phthalate metabolite MEHP and MBP on human liver
organoids

The potential impacts of MEHP and MBP on glucose and lipid
metabolism were examined using human liver organoids derived from
primary human hepatocytes. Human primary hepatocytes were

Table 1
Characteristics of participants and phthalates exposure levels in the GDM case-
control study.

Index Control group GDM group P value
(n =98) (n =102)
Age (year) 31.0 (27.8-34) 32.0 (29.0-35.0) 0.09
Height (cm) 163.0 (160.0-166.0) 162.0 (159.8-166.3) 0.26
Body weight 69.1 (62.0-77.1) 72.0 (65.0-79.1) 0.14
(kg)
BMI (kg/mz) 22.8 (20.6-25.5) 23.8 (21.2-26.6) 0.07
Serum Glucose 4.7 (4.6-4.9) 5.2 (4.9-5.2) <
(mmol/L) 0.001***
OGTT (mmol/
L)
Oh 4.3 (4.1-4.6) 4.9 (4.5-5.2) <
0.001***
1h 7.2 (6.2-8.2) 10.1 (9.0-10.7) <
0.001***
2h 6.2 (5.5-7.0) 8.6 (7.3-9.4) <
0.001***
Phthalates metabolites (ng/mL)
MBP 396.34 412.46 0.0333 *
(313.06-558.17) (328.45-622.05)
MEHP 9.37 (7.42-12.75) 11.87 (9.19-15.68) <
0.001***
MIBP 2.03 (1.47-2.84) 1.79 (1.20-2.61) 0.058
MEP 0.62 (0.50-0.96) 0.83 (0.64-1.12) <
0.001***
MCHP 0.05 (0.01-0.13) 0.03 (0.01-0.13) 0.154
MBzP 0.02 (0.02-0.02) 0.02 (0.02-0.07) <
0.001***

Variables were reported as median (interquartile range). Data was analyzed
using the Mann-Whitney U test or Independent Samples t-test. Statistical sig-
nificance is indicated in comparison to the control group, with * p < 0.05, **
p < 0.01, and *** p < 0.001.
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expanded and differentiated into liver organoids, which were subse-
quently characterized (Fig. 1a). After 5 days of differentiation, immu-
nofluorescence staining demonstrated the robust expression of mature
hepatocyte marker proteins, including CPT1A and ALB, while LD was
readily visualized within the organoid cells (Fig. 1b). Morphological
analysis revealed that treatment with MEHP and MBP at concentrations
exceeding 100 pM induced significant structural alterations and collapse
of liver organoids. The cytotoxicity also exhibited time-dependent
characteristics (Fig. 1c). Staining with 7-AAD also indicated that
MEHP (200 pM) induced significant cytotoxicity in liver organoids
(Supplementary Figure S4a and b). In contrast, neither compound
caused cytotoxicity at higher concentrations in HepG2 hepatoma cell
line (Supplementary Figure Sc). These findings suggest that liver orga-
noids provide a sensitive model for evaluating the toxicological effects of
MEHP and MBP.

3.3. MEHP and MBP enhanced glucose uptake and lipid accumulation in
human liver organoids

To evaluate the metabolic effects of MEHP and MBP in liver orga-
noids, a high-content analytical platform based on 3D organoid imaging
was developed, enabling precise identification of organoid cells and
quantitative analysis of the fluorescence staining (Fig. 2a). Using this
approach, the effects of lower concentrations of MEHP and MBP (2, 10,
50 pM) on glucose and lipid metabolism were systematically assessed.
The results showed that treatment with MEHP and MBP significantly
increased the mean stain area (MSA) of the glucose probe (2-NBDG) in a
dose-dependent manner (Fig. 2b); the effect in the MBP group was
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relatively weaker, but statistically significant compared to the control
group (Fig. 2b). Similarly, lipid accumulation was examined using LD
probe staining. Consistent with the glucose uptake results, MEHP
treatment caused a dose-dependent increase in LD levels within liver
organoids, while MBP treatment also led to significant elevations in lipid
accumulation compared to controls (Fig. 2c). These findings indicate
that both MEHP and MBP disrupt glucose and lipid metabolism in liver
organoids, potentially contributing to metabolic dysfunction in
hepatocytes.

3.4. MEHP and MBP upregulated insulin resistance associated signaling
pathways

To elucidate the mechanisms by which MEHP and MBP disrupt en-
ergy metabolism, RNA sequencing analysis was conducted using liver
organoids. The results revealed a significant overlap in gene expression
changes induced by MEHP and MBP, with over 64 % of the affected
genes shared between the two compounds (Fig. 3a). Pathway enrich-
ment analysis identified glycolysis/gluconeogenesis and the HIF-1
signaling pathway as the most significantly altered KEGG pathways
(Fig. 3b). A strong positive correlation was observed between the
upregulated and downregulated genes in response to MEHP and MBP
treatment (Fig. 3c). For example, both compounds significantly upre-
gulated glycolysis-associated genes (HK2, PFKFB3, PCK2, ALDOC,
ENO2, PKM, etc.), while downregulating cell cycle- and mitosis-
associated genes (CCNA2, CCND1, CCNB2, MKI67, CDC45, CENPF,
MCM10, etc.) (Fig. 3c). Gene set enrichment analysis (GSEA) further
showed that MEHP and MBP significantly upregulated pathways related
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Fig. 2. Effects of MEHP and MBP on glucose uptake and lipid accumulation in liver organoids. (a) Schematic illustration of the prob staining, high content imaging
(HCI), and quantitative analysis with the human liver organoids model. (b) Representative HCI images and quantitative analysis of the effects of MEHP and MBP on
glucose uptake in liver organoids. (c) Representative HCI images and quantitative analysis of the effects of MEHP and MBP on lipid accumulation in liver organoids.
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area (MSA) of staining was normalized by cell counting in each organoid. Data were analyzed using one-way ANOVA followed by Dunnett’s multiple comparisons
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to “glycolysis/gluconeogenesis” and “fructose and mannose meta-
bolism” (Fig. 3d). Additionally, pathways closely associated with
metabolic disorders and diabetes, such as the “mTOR signaling
pathway” and “insulin resistance”, were markedly upregulated in
MEHP- and MBP-treated groups (Fig. 3d). These findings suggest that
MEHP and MBP selectively disrupt the balance between glycolysis and
gluconeogenesis in liver organoids, potentially inducing insulin resis-
tance through activation of key signaling pathways linked to metabolic
disorders.

3.5. MEHP and MBP selectively enhanced glycolysis in human liver
organoids

Next, we utilized transcriptomic data to analyze the specific impact
of MEHP and MBP on glucose metabolism in liver organoids. Initially,
we observed that the expression levels of genes related to glycolysis/
gluconeogenesis and insulin resistance were significantly altered
following treatment with MEHP and MBP (Fig. 4a). Notably, the
expression levels of glycolysis-related genes were significantly upregu-
lated, while the expression levels of key rate-limiting enzymes in
gluconeogenesis were significantly downregulated. For instance, GGPC3
(which hydrolyzes glucose-6-phosphate to glucose) and G6PD (which
catalyzes the rate-limiting step of the oxidative pentose-phosphate
pathway) were downregulated. Additionally, the majority of genes in

the HIF-1 signaling pathway were upregulated, indicating that MEHP
and MBP promoted glycolysis while inducing the activation of the
hypoxia signaling pathway. Compared to the enhancement of glycolysis,
the expression levels of genes related to the Tricarboxylic acid (TCA)
cycle in mitochondria and Pentose phosphate pathway were signifi-
cantly downregulated (Fig. 4b). These results suggest that MEHP and
MBP selectively enhance anaerobic glycolysis while suppressing other
glucose metabolism pathways, including aerobic TCA cycle and Pentose
phosphate pathway. Regarding lipid metabolism-related pathways,
genes involved in fatty acid metabolism, fatty acid degradation, and
fatty acid elongation also exhibited some changes, but the extent of
these changes were moderate compared to those in glucose metabolism-
associated genes (Fig. 4c). Genes related to fatty acid activation (ACSL1/
4), triglyceride synthesis (AGPAT2, DGAT2, GPD1), and lipid droplet
packaging (PLIN2) were upregulated, which may be an important factor
in the lipid accumulation induced by MEHP and MBP in liver organoids.

To further validate the disturbing effects of MEHP and MBP on
glucose metabolism, the expression levels of key metabolic enzymes
involved in glycolysis (HK2, PFKFB3, and G6PC) were simultaneously
quantified using high-content analysis (Fig. 4d). HK2 phosphorylates
glucose to produce glucose-6-phosphate, the first step in glucose meta-
bolism pathways. PFKFB3 is a bifunctional protein involved in both the
synthesis and degradation of fructose-2,6-bisphosphate, and G6PC is
responsible for glucose production in the terminal step of glycogenolysis
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Fig. 4. Effects of MEHP and MBP on metabolism-associated gene expression profiles in human liver organoids. (a) Heatmap showing the expression change levels of
genes in glucose metabolism associated pathways after treatment with MEHP and MBP. (b) Schematic illustration of disruptive effects of MEHP and MBP on cellular
metabolism in the human liver organoids. Expression changes were mapped onto key genes involved in Glycolysis/Gluconeogenesis, Tricarboxylic acid cycle (TCA),
Pentose Phosphate Pathway, and Lipid Metabolism. Upregulation is indicated by red boxes, while downregulation is indicated by blue boxes. (c) Heatmap showing
the expression change levels of genes in lipid metabolism associated pathways after treatment with MEHP and MBP. (d) Representative high-content images showing
the expression of key metabolic enzymes (HK2, PFKFB3, G6PC, and PLIN2) at the protein level in human liver organoids. (e-h) Quantification of protein expression
levels of HK2 (e), PFKFB3 (f), G6PC (g), and PLIN2 (h). Human liver organoids were treated with MEHP and MBP (2, 10, 50 uM) for 48 h. Each concentration was
tested in at least two replicate wells, with data collected from a minimum of 10 organoids per well. The mean stain area (MSA) was normalized by cell counting in
each organoid. Data were analyzed using one-way ANOVA followed by Dunnett’s multiple comparisons test. Statistical significance is indicated in comparison to the

control group, with * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

and gluconeogenesis. The results demonstrated that the protein
expression levels for HK2 (Fig. 4e) and PFKFB3 (Fig. 4f) in liver orga-
noids treated with MEHP and MBP increased in a dose-dependent
manner. In contrast, the protein levels of G6PC were significantly
reduced following MEHP treatment (Fig. 4g). Additionally, PLIN2
expression was elevated by MEHP and MBP, but no significant dose-

response correlation was observed (Fig. 4h). Overall, these findings
indicate that the effects of MEHP and MBP on intracellular carbohydrate
and lipid metabolism may primarily manifest as the promotion of
glycolysis.
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3.6. MEHP and MBP promoted pyruvate catabolism and lactate
accumulation in liver organoids

In contrast to the promotion of glycolysis, “Pyruvate metabolism”
pathway was significantly down-regulated by MEHP and MBP in liver
organoids, as shown by the GSEA result using RNA-seq data (Fig. 5a).
Consistent with this, genes involved in pyruvate production within the
pyruvate metabolism pathway, such as PCK1/2 and PKM, were signifi-
cantly up-regulated, whereas most genes regulating pyruvate catabolism
were consistently down-regulated (Fig. 5b). For instance, the gene
expression of PC (which catalyzes the conversion of pyruvate to oxalo-
acetate) and PDH (that catalyzes the overall conversion of pyruvate to
acetyl-CoA, providing the primary link between glycolysis and TCA
cycle) were significantly decreased by MEHP and MBP. However, the
expression of LDHA, which catalyzes the conversion of pyruvate to
lactate with the concomitant oxidation of NADH to NAD in anaerobic
glycolysis, was increased. Thus, we hypothesized that this metabolic

Ecotoxicology and Environmental Safety 306 (2025) 119305

disruption may ultimately lead to pyruvate catabolism and lactate
accumulation (Fig. 5c¢). To test this hypothesis, we determined LDHA
expression in liver organoids at the protein level using the HCI method
(Fig. 5d). HCI quantification results showed that MEHP and MBP
(50 pM) significantly elevated LDHA levels (Fig. 5e). Furthermore, the
concentration of pyruvate and lactate in the culture medium of liver
organoids were measured. The results indicated that the two phthalate
metabolites dose-dependently decreased pyruvate levels (Fig. 5f). In
contrast, lactate concentrations were significantly increased by MEHP
and MBP (50 pM) (Fig. 5g). Taking together, these results suggest that
MEHP and MBP promote the metabolism of pyruvate to lactate in human
liver organoids.

Collectively, the expressions of glycolytic genes (e.g., HK2, PFKFB3)
were upregulated by MEHP and MBP, while the expression of genes
associated with the tricarboxylic acid (TCA) cycle and pentose phos-
phate pathway (PPP) were inhibited. These changes drive a shift in
glucose metabolism toward anaerobic glycolysis in human hepatic
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organoids, leading to substantial lactate accumulation. Notably, this was
in line with accumulating evidence that has established lactate as a key
trigger mediating obesity-induced inflammation and systemic insulin
resistance (Lin et al., 2022).

3.7. Differential responses of human liver organoids and HepG2 cell line
to MEHP

Finally, we compared the responses of liver organoids and the HepG2
hepatoma cell line to the representative metabolite MEHP. RNA-
sequencing analysis demonstrated that the number of genes with
altered expression induced by MEHP was significantly higher in orga-
noids (669) than in HepG2 cells (105), with only 4 overlapping genes,
representing merely 0.5 % of all differentially expressed genes (Fig. 6a).
Pathway enrichment analysis of the differentially expressed genes from
the HepG2 cell model failed to identify any significantly enriched KEGG
pathways. Additionally, the expression changes of insulin resistance-
associated genes in HepG2 cells were markedly less pronounced than
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those in liver organoids (Fig. 6b), suggesting that liver organoids may
exhibit greater sensitivity to the metabolic disrupting effects of phtha-
late metabolites.

GSEA result revealed that MEHP significantly upregulated the PPAR
signaling pathway in both liver organoid and HepG2 cells (Fig. 6c).
However, the magnitude of alterations in PPAR signaling pathway-
related gene expression were more substantial in liver organoids than
in the HepG2 cell line (Fig. 6d). Notably, MEHP exerted different effects
on metabolic pathways in the two models. In liver organoids, MEHP
inhibited the TCA cycle, whereas in HepG2 cells, it upregulated both
oxidative phosphorylation and TCA cycle (Fig. 6e). In terms of lipid
metabolism, MEHP primarily promoted the oxidation and degradation
of fatty acids, as evidenced by the upregulation of genes such as ACOX1,
ACAA2, ACADVL, HADH, and ACSL, while concurrently inhibiting fatty
acid biosynthesis, as indicated by the downregulation of genes including
FASN, MCAT, ECHS1, HACD1, and MECR in liver organoids (Fig. 6f). In
contrast, in HepG2 cells, genes related to fatty acid biosynthesis were
also upregulated (Fig. 6f). Furthermore, the differential response of the
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OXPHOS pathway between the two models was particularly evident.
MEHP markedly suppressed OXPHOS gene expression in liver organoids
but induced its upregulation in HepG2 cells (Fig. 6f). Collectively, these
findings suggest that liver organoids exhibit heightened sensitivity to
MEHP-induced activation of PPAR signaling pathway and disruption of
glucose metabolism. Therefore, compared to the widely used HepG2 cell
line, liver organoids may represent a more appropriate alternative
model for evaluating the potential risks and elucidating the molecular
mechanisms underlying phthalates-induced metabolic disorders, such as
GDM.

4. Discussion

In this study, our data demonstrated that four phthalate metabolites
(MBP, MEHP, MEP, and MBzP) are elevated in GDM patients, suggesting
a potential link to GDM risk. The observed elevation in these com-
pounds’ levels may reflect greater exposure to phthalates in GDM pa-
tients and altered metabolism during pregnancy (Chen et al., 2023; Peng
et al., 2024). This aligns with previous studies linking phthalate expo-
sure to diabetes risk. For example, cross-sectional studies have reported
associations between urinary phthalate metabolites and markers of
glucose intolerance (James-Todd et al., 2022; Shaffer et al., 2019).
However, the causality between phthalates and GDM and its underlying
mechanisms remains unclear. Our findings on the metabolic disruptions
induced by MEHP and MBP in human liver organoids suggest that
phthalates may exacerbate hepatic lactate accumulation and insulin
resistance, providing a mechanistic explanation for the health implica-
tion of phthalates exposure.

Numerous human and animal studies have shown that the devel-
oping male reproductive system is highly susceptible to DEHP’s toxic
effects (Agency for Toxic Substances and Disease Registry ATSDR
Toxicological Profiles, 2022), and reproductive toxicity has long been
the reference endpoint for estimating tolerable daily intake (TDI) of
phthalates (Lambreé et al., 2022). Nevertheless, emerging data indicates
that metabolic systems might be more sensitive to certain phthalates
than their reproductive toxicity (Silano et al., 2019). The liver is
recognized as the primary target organ for the repeated-dose toxicity of
DEHP in rodents (Li et al., 2021). But in adult human populations, it is
difficult to establish a causal link between metabolic
dysfunction-associated steatotic liver disease (MASLD) and phthalate
exposure (Gogola et al., 2025). PPAR activation in the liver by DEHP and
its metabolites is well-documented in mice and rats (Rusyn and Corton,
2012; Rusyn et al., 2006). However, the varying sensitivity of PPARs in
hepatocytes across different species poses a significant challenge to
human health risk assessment (Foreman et al., 2021). Although some
studies using HepG2 cells have shown DEHP induces hepatotoxicity, it is
uncertain whether these cells can accurately replicate the normal he-
patocyte phenotype and liver tissue microenvironment. In contrast,
human liver organoids provide a more physiologically relevant model
for studying the metabolic-disrupting effects of phthalates. Our results
demonstrate that MEHP and MBP significantly altered glucose and lipid
metabolism in liver organoids, which may offer scientific evidence for
explaining GDM etiology.

RNA sequencing and HCI analysis using liver organoids have offered
insights into the molecular mechanisms underlying the metabolic dys-
regulation by MEHP and MBP. Of particular significance, glycolysis/
gluconeogenesis and the HIF-1 signaling pathway emerged as the most
substantially altered KEGG pathways. The changes suggest a shift in
hepatic energy metabolism toward glycolysis, potentially leading to the
increased lactate production as observed in our experiments. The acti-
vation of the HIF-1 pathway corroborates the hypothesis that phthalates
induce a hypoxic metabolic state (Li et al., 2024). HIF-1, a transcription
factor stabilized under hypoxia, plays a crucial role in promoting
glycolysis and inhibiting oxidative phosphorylation (Gonzalez et al.,
2018). The upregulation of HIF-1 target genes, such as LDHA, which
catalyzes the conversion of pyruvate to lactate, explains the observed
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increase in lactate production. This metabolic shift not only disrupts
glucose homeostasis but also contributes to metabolic acidosis, thereby
exacerbating insulin resistance (DiNicolantonio and O’Keefe, 2021).
Another key pathway highlighted by our analysis is the mTOR signaling
pathway, which is closely associated with insulin resistance and meta-
bolic disorders. Activation of mTOR can lead to increased glycolysis
while suppressing insulin signaling (Saxton and Sabatini, 2017).
Collectively, these results highlight the liver as a critical target organ for
phthalate-induced metabolic disruption such as GDM.

The comparative analysis between liver organoids and HepG2 cells
revealed significant differences in the response to phthalate metabolites.
Our results suggest that liver organoids are more sensitive to the
metabolic-disrupting effects of phthalates. The greater sensitivity of
liver organoids may be attributed to their more physiologically-relevant
structure and functions (Hendriks et al., 2024; Igarashi et al., 2025). For
example, the expression changes of insulin resistance associated genes
were more pronounced in liver organoids than in HepG2 cells. This
highlights the importance of using liver organoids as a more appropriate
model for studying the toxicological effects of phthalates on hepatic
metabolism.

The clinical relevance of our findings lies in the potential for
phthalate exposure to contribute to the rising prevalence of metabolic
disorders (Chew et al., 2023). The observed metabolic disruptions in
liver organoids, such as enhanced glycolysis and lactate production,
suggest that phthalates may exacerbate insulin resistance and glucose
intolerance. Given the widespread use of phthalates in consumer prod-
ucts and the difficulty in avoiding environmental exposure, our results
emphasize the need for strategies to reduce phthalate exposure, partic-
ularly during pregnancy and other critical periods of metabolic
vulnerability.

5. Limitations

Firstly, the cohort was recruited from a single geographic region of
China; therefore, allele-frequency gradients, dietary patterns and other
lifestyle factors may constrain external validity. For the organoid ex-
periments, on one hand, the short-term treatment with MEHP and MBP
cannot reproduce life-long, low-dose exposure in human population; on
the other hand, the experimental concentrations were higher than
human-relevant serum levels, which may overestimate the toxicological
potency. In addition, only two individual metabolites (MBP and MEHP)
were tested, whereas humans are concurrently exposed to complex
phthalate mixtures that may act additively or synergistically; thus, the
study may underestimate real-world risk. Finally, although hepatic
metabolism was investigated, the multi-organ signalling network link-
ing phthalate exposure to systemic insulin resistance remains incom-
pletely mapped.

6. Conclusion

In conclusion, our study provides novel evidence linking phthalate
exposure to GDM risk and elucidates the underlying mechanisms
through which phthalates disrupt hepatic metabolism. The elevated
levels of MBP and MEHP in GDM patients and their disruptive effects on
glucose and lipid metabolism in liver organoids highlight the potential
role of phthalates in GDM pathogenesis. Our findings underscore the
importance of considering environmental exposures in the context of
GDM prevention and management.
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